Gravitational Fields Worksheet

1. What is the force of gravitational attraction between two $1.8 \times 10^{8} \mathrm{~kg}$ supertankers moored so that their centers are located 94 m apart? (245 N)
2. A woman standing on the surface of the earth has a mass of 70.0 kg . Calculate the force of gravity acting on the woman? (686 N)
3. The force of gravitational attraction between two masses is 36 N . What will the force be if one mass is doubled and the distance between them is tripled? (8.0 N)
4. Mars has a radius 0.54 times that of Earth and a mass 0.11 times that of Earth. If the force of gravity on you is 600 N on Earth, what will it be on Mars? (226 N)
5. Calculate the acceleration due to gravity on Jupiter. ($24 \mathrm{~m} / \mathrm{s}^{2}$)
6. Two balls of mass 5.9 kg and 0.047 kg are separated by a distance of 0.055 m . Calculate the force of attraction between them. $\left(6.1 \times 10^{-9}\right)$
7. Calculate the gravitational force the sun exerts on Jupiter. $\left(4.2 \times 10^{23} \mathrm{~N}\right)$
8. Two spherical balls are placed so their centers are 2.6 m apart. The force between the two balls is $2.75 \times 10^{-12} \mathrm{~N}$. What is the mass of each ball if one ball is twice the mass of the other ball? (0.4 kg and 0.8 kg)
9. Four masses are located on a plane as illustrated below. What is the magnitude of the net gravitational force on m_{1} due to the other three masses? $\left(6.8 \times 10^{-12} \mathrm{~N}\right)$

